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Trustworthy Artificial Intelligence (AI)

Trustworthy AI refers to artificial intelligence systems that are
explainable, fair, interpretable, robust, transparent, safe and
secure. These qualities create trust and confidence in AI systems
among stakeholders and end users1.

Our primary focus in this tutorial is on algorithmic dimensions of
trustworthiness in Reinforcement Learning, rather than explicitly
covering broader cybersecurity principles.

1 IBM, “What is trustworthy AI?,” Accessed: 2025-05-01. (2024), [Online]. Available: https://www.ibm.com/think/topics/

trustworthy-ai
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Tutorial Goals & Approach

There are a lot of interesting and emerging advances on trustworthy
RL, primarily driven by robotics applications. We will provide a ”lay
of the land” overview of these and discuss a select subset of them.

We will avoid math but will occasionally introduce notation and some
definitions in some slides. These however are not crucial to
understand the tutorial.

We will often introduce code snippets of implementations. This is to
help turn ”abstract” concepts to code and to show that the barrier to
entry is not very high given the advances in Deep RL libraries.

Our main objective is to introduce concepts and familiarity of the
advances in this emerging research area.
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The ITU’s IMT-2030 Vision Framework

Figure: Usage scenarios and capabilities of IMT-20302.

2 “Framework and overall objectives of the future development of imt for 2030 and beyond,” International Telecommunication
Union (ITU) Recommendation (ITU-R), 2023
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The Need for AI-Native Next-Gen Wireless Networks3

Escalating Network Complexity:
Heterogeneous technologies and dynamic environments.
Manual optimization is no longer feasible.
Solution: ML can manage complexity and deliver competitive
performance.

Model Deficiency:
Traditional models rely on simplifying assumptions.
Unable to capture unknown dynamics and nonlinearities.
Advantage: ML captures complex patterns in NGWNs.

Algorithm Limitations:
Optimal algorithms are often impractical due to high complexity.
Reliance on heuristics leads to suboptimal performance.
Benefit: ML balances performance and computational complexity.

3 A. M. Nagib, H. Abou-Zeid, and H. S. Hassanein, “Accelerating reinforcement learning via predictive policy transfer in 6g ran
slicing,” IEEE Transactions on Network and Service Management, vol. 20, no. 2, pp. 1170–1183, 2023. doi: 10.1109/TNSM.

2023.3258692
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Background on RL for
Next-Gen Wireless Networks

(NGWNs)
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Basic Reinforcement Learning (RL) Interactions

RAN intelligent controller

DRL agent

Wireless network 
environment

Reward (Rt)

Action (At)

State (St)State (St+1)

E.g., PRB allocation per slice

In terms of NGNs KPIs
E.g., latency, throughput, etc. 

E.g., traffic load, channel conditions, etc. 

Policy

Figure: Basic interactions between a DRL agent and the network environment4.

4 A. M. Nagib, H. Abou-Zeid, and H. S. Hassanein, “Safe and accelerated deep reinforcement learning-based o-ran slicing: A
hybrid transfer learning approach,” IEEE Journal on Selected Areas in Communications, vol. 42, no. 2, pp. 310–325, 2024. doi:
10.1109/JSAC.2023.3336191
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RL Code Example

Traditional RL

1 # Initialize environment and agent

2 env = NetworkSlicingEnv ()

3 agent = DQNAgent ()

4

5 # Training loop

6 for episode in range(num_episodes):

7 state = env.reset()

8 done = False

9 while not done:

10 action = agent.act(state)

11 next_state , reward , done , _ = env.step(action)

12 agent.learn(state , action , reward , next_state)

13 state = next_state

14

Listing: Traditional RL
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RL Fundamentals

Formal Definition of RL5:
RL is formulated as a Markov Decision Process (MDP) defined by a
tuple (S,A,P,R, γ), where:

S: set of states
A: set of actions
P(s ′|s, a): transition probability
R(s, a): reward function
γ ∈ [0, 1): discount factor

The objective is to find a policy π(a|s) that maximizes the expected
cumulative reward:

J(π) = Eπ

[ ∞∑
t=0

γtR(st , at)

]
(1)

5 R. S. Sutton, A. G. Barto, et al., Reinforcement learning: An introduction. MIT press Cambridge, 2018, vol. 2
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Why Reinforcement Learning for Network Optimization?

Seamless Integration with Network Control:
RL naturally fits the feedback loop of network operations.
Adapts to operator goals and policies.

Towards Autonomous Networks:
Capable of real-time decision-making in complex environments.
Does not require full knowledge of the network system.

Industry Momentum:

Standard bodies and vendors are promoting RL.
Growing recognition of RL’s potential in NGWNs.
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Capable of real-time decision-making in complex environments.
Does not require full knowledge of the network system.

Industry Momentum:

Standard bodies and vendors are promoting RL6,7.
Growing recognition of RL’s potential in NGWNs.

6 M. Tsampazi, S. D’Oro, M. Polese, et al., “A comparative analysis of deep reinforcement learning-based xapps in o-ran,” in
IEEE Global Communications Conference (GLOBECOM), 2023, pp. 1638–1643. doi: 10.1109/GLOBECOM54140.2023.10437367

7 T. E. Blog, Bringing reinforcement learning solutions to action in telecom networks, https://www.ericsson.com/en/blog/
2022/3/reinforcement-learning-solutions, [Accessed 22-01-2024], 2022
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RL Applications in Next-Gen Wireless Networks

Examples of RL Applications8:

Power Control
RL techniques manage transmission power levels to enhance network
performance and energy efficiency.

Beamforming and Beam Management
RL algorithms dynamically adjust beam directions and widths to
improve signal quality and coverage.

Handover Management
RL models predict optimal moments and targets for user equipment
handovers to maintain seamless connectivity.

Network Slicing
RL assists in the allocation and management of network slices to cater
to diverse service requirements efficiently.

8 A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement learning for ai-enabled wireless networks: A tutorial,”
IEEE Communications Surveys Tutorials, vol. 23, no. 2, pp. 1226–1252, 2021. doi: 10.1109/COMST.2021.3063822
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Network Slicing: Use Cases

Figure: T-Mobile four network slice use-case realizations9

9 Ericsson, Ericsson mobility report, https://www.ericsson.com/en/reports- and- papers/mobility- report/reports/
november-2024, 2024
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RAN Slicing: Inter-Slice Resource Allocation

 

 Inter-slice resource allocation
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Figure: Scope and temporal resolution of inter-slice resource allocation10

10 A. M. Nagib, “A trustworthy deep reinforcement learning framework for slicing in next-generation open radio access networks,”
Ph.D. dissertation, School of Computing, Queen’s University, 2024
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Mapping Inter-Slice Resource Allocation to RL

State Representation
Observed by slicing xApp in near-RT RIC
Represents slices’ traffic contribution in previous window, Ωt−1

Vector form:
κ = (κ1, . . . , κS)

Alternatives: Number of active users or packets per slicing window

Action Space
Action taken at each slicing window start
Select PRB allocation per slice as bandwidth percentage
Constraint:

a = (b1, . . . , bS), subject to
S∑

s=1

bs ≤ B
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Mapping Inter-Slice Resource Allocation to RL

Reward Function Design
Receives network KPI feedback post action:

R =

[
wu ∗ 1−

∑∥S∥
s=1 bs
B

]
+

 wl ∗
∥S∥∑
s=1

ws ∗ 1

1+ e c1s ∗ ( ls − c2s )


Parameters:

The weights, wu and wl ∈ [0, 1], reflect the importance of the goals
A [wu = 0.5, wl = 0.5] setting means that both goals are equally
important
ws : Priority weight for slice s
ls : Average latency for slice s

However, deploying RL in real-world networks comes with
significant challenges...
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Practical Challenges of
Reinforcement Learning
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Challenges of Deploying DRL in NGWNs:
Risky Exploration

0 200 400 600 800 1000
Decision Time Steps

0.0

0.2

0.4

0.6

0.8

1.0
SL

A 
M

et
ric

Safe Exploration
Risky Exploration
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Figure: The Challenge of Risky Exploration in Wireless Networks

Exploration, though limited, can occur in deployment environments.
Consequence: Actions during exploration can lead to Service Level
Agreements violations.
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Challenges of Deploying DRL in NGWNs:
Ungeneralizable Algorithms
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Figure: Challenges in Generalizing from Simulation to Real-World Environments

Simulation environments often simplify real-world dynamics.

DRL models may fail to adapt to unforeseen deployment conditions.
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Challenges of Deploying DRL in NGWNs:
Slow Convergence
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Figure: Challenges in Generalizing from Simulation to Real-World Environments

DRL models may fail to adapt to unforeseen deployment conditions
quickly.
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Challenges of Deploying DRL in NGWNs:
Non-Robust RL Algorithms

Low Uncertainty High Uncertainty
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Figure: The Challenge of Non-Robust RL Algorithms in Wireless Networks

Environment discrepancies and network stochasticity lead to
uncertainties.
Need: Enhance worst-case performance under uncertain network
conditions.
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Challenges of Deploying DRL in NGWNs:
Lack of Explainability

Data and Model Transparency:
Difficulty in interpreting DRL policies and decisions.
Deep neural networks act as ”black boxes.”
Implication: Challenges in trust, accountability, and adoption.
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Trustworthiness in
Reinforcement Learning
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Overview of RL Trustworthiness Dimensions

Open Radio Access Network Intelligent Controllers

DRL-based radio resource 
management agent

Virtualized O-RAN environment

E2 interface

Trustworthy Reinforcement Learning Framework

Modify the exploration process (e.g., overwrite actions)

Accelerated 
Generalization

Safety ExplainabilityRobustness

Radio Access Netwok Slicing
Resouce Block 

Allocation

Constraints Uncertainty

Distribution shift

Uninterpretable actions

Change the optimization criterion  (e.g., composite reward)

Figure: A trustworthy DRL framework for RRM in O-RANs11

11 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “Developing trustworthy reinforcement learning applications for next-
generation open radio access networks,” in 2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
2024, pp. 137–138. doi: 10.1109/CCECE59415.2024.10667311
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Overview of RL Trustworthiness Dimensions (1/2)

è Safety
Ensuring agents avoid harmful or unsafe actions.
Satisfy safety constraints:

c (st , at , st+1) ≤ κ (2)

� Generalizability
Ability to perform well in unseen or varying environments.
Ensure that the policy π generalizes when:

ρdeployment(z) ̸= ρtrain(z) (3)

11 M. Xu, Z. Liu, P. Huang, et al., “Trustworthy reinforcement learning against intrinsic vulnerabilities: Robustness, safety, and
generalizability,” arXiv preprint arXiv:2209.08025, 2022
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Overview of RL Trustworthiness Dimensions (2/2)

M Robustness
Resilience to adversarial conditions and uncertainties.
Enhance the worst-case performance under uncertain variable U:

max
π

min
U

J(π,U) (4)

4 Explainability
Making agent decisions understandable to humans.
Provide interpretable representations π̂(a|s) approximating π(a|s).

11 M. Xu, Z. Liu, P. Huang, et al., “Trustworthy reinforcement learning against intrinsic vulnerabilities: Robustness, safety, and
generalizability,” arXiv preprint arXiv:2209.08025, 2022
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Safe Reinforcement Learning
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Risky Exploration in Trustworthy DRL

What is Risky Exploration?
The tendency of DRL algorithms to explore unsafe or suboptimal
actions during learning.
Likely to happen when newly deployed to a network, or when
significant condition changes occur

The Risky Exploration Problem:

Service in NGWNs may have strict requirements such as latency and
reliability.
Exploration may lead to unsafe states, e.g., severe QoS violations or
service outages.
Cause:

max
π

E[R(π)] (5)

A trajectory may be maximizing the cumulative reward but can lead
to unsafe interim states during exploration.
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Trustworthiness Dimension: Safety

Definition: Safety in RL involves ensuring agents operate without
causing unintended harm or violating constraints12.

Mathematical Formulation: Depends on the constraint type, can be
broadly categorized in RL into:

Cumulative Constraints
Instantaneous Constraints

12 J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforcement learning,” Journal of Machine Learning Research,
vol. 16, no. 1, pp. 1437–1480, 2015
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Cumulative Constraints (Trajectory-Wise)

Definition: Cumulative constraints require that the sum or average of a
certain metric (e.g., throughput, energy consumption) from the start to the
current time step remains within a specified limit. These constraints are
typically modelled based on the expectation of a cumulative cost signal.

Mathematical Formulation13:

Jπθ
Ci

= Eτ∼πθ

[ ∞∑
t=0

γtCi (st , at , st+1)

]
≤ ϵi (6)

τ = (s0, a0, s1, a1, . . .): Trajectory sampled from policy πθ.

γ: Discount factor.

Ci (st , at , st+1): Cost signal at time step t.

ϵi : Threshold for the i th cumulative constraint.
13 M. Xu, Z. Liu, P. Huang, et al., “Trustworthy reinforcement learning against intrinsic vulnerabilities: Robustness, safety, and
generalizability,” arXiv preprint arXiv:2209.08025, 2022
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Cumulative Constraints (Trajectory-Wise)

Constrained Markov Decision Process (CMDP) Formulation14:

maxθ J
πθ
R

s.t. Jπθ
Ci

≤ ϵi , ∀i (7)

Objective: Maximize the discounted cumulative reward Jπθ
R .

Constraints: Ensure that each cumulative cost Jπθ
Ci

does not exceed
its threshold ϵi .

Application Example:

Cumulative Throughput Constraint for a service such as HD video
streaming.

Ensures that the average throughput over time abides by a specified
threshold to maintain quality of service.

14 Y. Liu, A. Halev, and X. Liu, “Policy learning with constraints in model-free reinforcement learning: A survey,” in The 30th
international joint conference on artificial intelligence (ijcai), 2021
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Instantaneous (Step-Wise) Constraints

Definition: Instantaneous constraints require that specific conditions are
met at each individual time step. Unlike cumulative constraints, these
must hold true for every action taken by the policy.

Mathematical Representation15:

maxθ J
πθ
R

s.t. Ci (st , at , st+1) ≤ ωi , ∀t,∀i (8)

ωi : Threshold for the i th instantaneous constraint.

15 Y. Liu, A. Halev, and X. Liu, “Policy learning with constraints in model-free reinforcement learning: A survey,” in The 30th
international joint conference on artificial intelligence (ijcai), 2021
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Instantaneous (Step-Wise) Constraints

Definition:

Ensures that each action at every time step adheres to the predefined
constraints.

Thresholds are typically predefined constants based on service
requirements, configurable by Mobile Network Operators (MNOs) in
O-RAN scenarios.

Application Example:

Explicit Constraints: Have closed-form expressions allowing direct
numerical evaluation (e.g., availability of radio resources).

Implicit Constraints: Lack precise closed-form representations due
to system complexity (e.g., network latency).
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Comparison of Cumulative vs. Instantaneous Constraints

Cumulative Constraints:
Suitable for scenarios where long-term performance is critical.
Allows for occasional violations as long as the aggregate remains within
limits.

Instantaneous Constraints:
Essential for applications requiring real-time guarantees.
Demands strict compliance at every decision step, limiting policy
flexibility.

Aspect Cumulative Constraints Instantaneous Constraints

Definition Constraints on aggregated metrics over time Constraints on metrics at each time step
Formulation J

πθ
Ci

= E
[∑

t γ
tCi (st , at , st+1)

]
≤ ϵi Ci (st , at , st+1) ≤ ωi , ∀t

Evaluation Expectation over trajectories Per action and state
Flexibility Handles long-term trade-offs Requires strict adherence each step
Complexity Easier with CMDP techniques More challenging due to per-step constraints
Use Cases Average throughput, cumulative energy Real-time resource allocation, latency requirements

Table: Cumulative vs. Instantaneous Constraints
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Changes in RL Environment to Accommodate Constraints

Adding Cost Signal to Gym Environment

1 class MyCustomEnv(gym.Env):

2 def __init__(self):

3 super(MyCustomEnv , self).__init__ ()

4 # Initialization code for the environment

5

6 def step(self , action):

7 # Standard step logic

8 next_state , reward , done , info = ... # Transition

calculations

9

10 # Add a cost signal

11 cost = self._calculate_cost(next_state , action)

12 info[’constraint ’] = cost

13

14 return next_state , reward , done , info

15

16 def _calculate_cost(self , state , action):

17 # Custom cost calculation logic

18 cost = 1 if state violates some_condition else 0

19 return cost

20

Listing: Adding Cost Signal
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Strategies to Enhance DRL Safety

Reward Engineering
External Safety
Mechanisms

Optimization-Based
Strategies

Reward Shaping
for Safety

Shielding-Based
Approaches

Constrained RL
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Reward Engineering

Reward Shaping
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Reward Shaping

RL Agent Environment

Shaped Reward

Action

Raw RewardModified Reward

Figure: Reward shaping enhances raw rewards with safety-aware modifications.
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Reward Shaping for Safety

Definition: Modifies the reward function to embed safety guidance.

Key Idea: Guides the agent towards safer behaviours by incentivizing
safe actions and discouraging unsafe ones.

R ′(s, a, s ′) = R(s, a, s ′) + F (s, a, s ′)

where F (s, a, s ′) represents additional rewards or penalties for safety.

15 Z. Zhu, K. Lin, A. K. Jain, et al., “Transfer learning in deep reinforcement learning: A survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 45, no. 11, pp. 13 344–13 362, 2023. doi: 10.1109/TPAMI.2023.3292075
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Reward Shaping: Code Example

RL With Reward Shaping

1 raw_reward = env.step(action)

2 safety_penalty = compute_penalty(state , action)

3 reward = raw_reward - safety_penalty

4 agent.learn(state , action , reward , next_state)

5

Listing: RL with reward shaping adding penalties
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Reward Shaping Example in Network Slicing

Objectives:

Minimize resource consumption

Fulfill SLA constraints

Approach:

Shape rewards to guide resource allocation actions to avoid SLA
violations

Example Implementation:

Add extra penalties for violating QoS constraints such as latency.

15 A. M. Nagib, H. Abou-Zeid, and H. S. Hassanein, “Safe and accelerated deep reinforcement learning-based o-ran slicing: A
hybrid transfer learning approach,” IEEE Journal on Selected Areas in Communications, vol. 42, no. 2, pp. 310–325, 2024. doi:
10.1109/JSAC.2023.3336191
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Risk-Aware Multi-Objective Reward Function

Reward Function:

R =

[
wu

(
1−

∑|S|
s=1 bs
B

)]
+

wl

|S|∑
s=1

ws
1

1 + ec1s(ls−c2s)

 (9)

wu,wl ∈ [0, 1]: Importance weights

bs : Bandwidth utilization for slice s

B: Total available bandwidth

ws : Priority weight for slice s

ls : Average latency for slice s

c1s : Slope of the sigmoid function for slice s

c2s : Inflection point (acceptable latency for slice s)
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Sigmoid-Based Reward Function

Behavior:
1 Far from Threshold: High reward
2 Near Threshold: Rapid decrease in reward
3 Beyond Threshold: Significant penalty

c2 (VR gaming) c2 (Video) c2 (VoNR)
Latency
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Reward Function Design Highlights

Why Sigmoid?

Non-linear penalization near latency thresholds

Differentiates behavior based on distance from thresholds

Weight Configuration:

wu = 0.5, wl = 0.5: Equal importance

Adjust weights based on priority

Parameter Tuning:

c1s : Determines when to start penalizing

c2s : Sets the pre-defined SLA threshold per slice

Advantages:

Encourages safe actions near latency limits

Attempt to balance resource utilization with SLA compliance
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External Safety Mechanisms

Safety Shields
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Shielding-Based Approaches Visualization

RL Agent Safety Shield

EnvironmentReward Signal

Action

Filtered Action

Reward

Feedback

Figure: A shield intercepts and blocks unsafe actions. Optional feedback from the
environment can guide the RL agent.
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Safety Shields

Concept:
Utilizes external shields to monitor actions proposed by the agent.
Overrides or modifies actions that may lead to unsafe states.

Advantages:
Ensures safety without severely restricting learning.
Can be applied during both training and deployment.

Formal Definition:

at =

{
at if at ∈ S(st)
asafe otherwise

where S(st) is the set of safe actions.
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Shielding: Code Example

With Shield

1 action = agent.act(state)

2 if not is_safe(state , action):

3 action = fallback_action(state)

4 next_state , reward , done , _ = env.step(action)

5 agent.learn(state , action , reward , next_state)

6

Listing: RL With Shield

A. Nagib, H. Abou-Zeid, H. Hassanein RL for NGNs: The Road road to Trustworthiness Slide 50/153



Safe Reinforcement Learning IEEE ICMLCN - May 26, 2025

Shielding Advantages and Challenges

Advantages of Shielding:

Enhanced Safety: Guarantees safety during both training and
deployment phases.

Learning Stability: Prevents the agent from entering dangerous or
highly negative reward states, aiding in stable convergence.

Transferability: Shields can be reused across agents or environments
if the safety rules are generalizable.

Challenges of Shielding:

Shield Design Complexity: Requires domain expertise and can be
challenging in environments with complex dynamics.

Potential Suboptimality: Restricting risky actions can prevent
optimal exploration, possibly resulting in a suboptimal policy.
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Alternative Approach Example for Network Slicing

Study Overview16: Ensure safe bandwidth allocation without SLA
violations in network slicing.

Idea:
RL agent allocates bandwidth for slices.
Overwrite actions expected to lead to the violation of the defined SLA
thresholds.

Approach:
A supervised learning model is used to predict the cost of actions.
A feasible set is created based on such predictions.

16 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “Safeslice: Enabling sla-compliant o-ran slicing via safe deep reinforcement
learning,” in IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), 2025
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Alternative Approach Example for Network Slicing

Non-real-time RIC

Near-real-time RIC

Safe DRL-based inter-slice resource allocation xApp

Expert policies registry MNO configurations
SLAs, reward function 

weights, etc.

E2 interface

A1 interface(1) load pre-trained expert policy

Learner agent Learner policy

(9) Update policy

(4) Recommended action

(2) System state

(3) Consult learner policy

? 1 ? p? 2

   (8) Reward and cost signals

Action cost  <=  
Latency threshold

Trained cost models

(5) Consult cost model

C1 Ci

Choose the action 
with the smallest 

Eucledian distance

(7)

Collected real 
network data

Offline DRL training

DRL agent
Environment 
Digital Twin

Safety Layer

Follow the action 
recommeded by 
the agent's policy 

(6) Expected actions cost

Action cost  >  
Latency threshold

C2

Virtualized O-RAN environment

Radio Access Netwok 
Slicing

Resouce Block 
Allocation

Figure: SafeSlice: A Safe DRL-Based O-RAN Slicing System17

17 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “Safeslice: Enabling sla-compliant o-ran slicing via safe deep reinforcement
learning,” in IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), 2025
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Alternative Approach Example for Network Slicing

Algorithm Safe DRL-based Inter-slice RA

1: for each time step t = 1 to T do
2: Compute action from policy: at = π(st)
3: Predict cost for each slice: Ci (st , at) = C(st , at)
4: if Ci (st , at) > ωi for any slice i then
5: Define feasible actions: Af = {a′ ∈ A | Ci (st , a

′) ≤ ωi}
6: Select closest action: a′t = argmina′∈Af

∥a′ − at∥
7: else
8: Set a′t = at
9: end if

10: Execute action a′t
11: Observe reward Rt and next state st+1

12: Update the agent’s policy π
13: end for
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Supervised Learning for Cost Prediction

Purpose: Predict cost function Ci using a supervised regression model C.
Inputs: State-action pairs (st , at).
Output: Predicted cost Ci (st , at).
Cost Signal:

CΩt ,s =
1

Us

Us∑
u=1

LΩt ,s,u (10)

LΩt ,s,u: Latency experienced by user u in slice s during window Ωt .

Predicted cost (average slice latency)

LS

 Output
L1 L2t + 1

Observed contribution to overall traffic

KSK1 K2t 

Cost model
Observed cost (average slice latency)

LSL1 L2t 
 Input

Action (inter-slice RA)

bSb1 b2t 

Figure: Inputs and outputs of the proposed cost model.
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Alternative Approach Example for Network Slicing

Goal: Project RL agent’s action onto a feasible space to satisfy latency
constraints.

min
a′t

1

2

∥∥a′t − at
∥∥2

s.t. Ci

(
st , a

′
t

)
≤ ωi

(11)

a′t : Feasible action closest to original action at .

Ci : Cost function (latency) for slice i .

ωi : Latency threshold for slice i .
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Instantaneous Violations Performance
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(b) Same traffic, different latency threshold.

Figure: Number of instantaneous violations accumulated over decision time steps.

17 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “Safeslice: Enabling sla-compliant o-ran slicing via safe deep reinforcement
learning,” in IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), 2025
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Figure: Number of instantaneous violations accumulated over decision time steps.

17 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “Safeslice: Enabling sla-compliant o-ran slicing via safe deep reinforcement
learning,” in IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), 2025
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Resource Consumption Performance
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Figure: Resource consumption under the first two traffic test categories.

17 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “Safeslice: Enabling sla-compliant o-ran slicing via safe deep reinforcement
learning,” in IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), 2025
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Resource Consumption Performance
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Figure: Resource consumption under the last two traffic test categories.

17 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “Safeslice: Enabling sla-compliant o-ran slicing via safe deep reinforcement
learning,” in IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), 2025
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Alternative Approach Example: Digital Twin Shielding

Scenario: Safe Adaptive Data Rate (SADR) system.

Approach: evaluate traffic requests from the User Equipments (UEs)
to identify and prevent risky actions and states that can lead to
outages, improving the performance in the real network.

Drawbacks: Can be infeasible for time-critical network functionalities.

17 C. P. Robinson, A. Lacava, P. Johari, et al., “Twinet: Connecting real world networks to their digital twins through a live
bidirectional link,” in GLOBECOM 2024 - 2024 IEEE Global Communications Conference, 2024, pp. 5277–5282. doi: 10.1109/
GLOBECOM52923.2024.10901203

A. Nagib, H. Abou-Zeid, H. Hassanein RL for NGNs: The Road road to Trustworthiness Slide 61/153

https://doi.org/10.1109/GLOBECOM52923.2024.10901203
https://doi.org/10.1109/GLOBECOM52923.2024.10901203


Safe Reinforcement Learning IEEE ICMLCN - May 26, 2025

Alternative Approach Example: Digital Twin Shielding

Figure: Digital twin as a safety shield18.

18 C. P. Robinson, A. Lacava, P. Johari, et al., “Twinet: Connecting real world networks to their digital twins through a live
bidirectional link,” in GLOBECOM 2024 - 2024 IEEE Global Communications Conference, 2024, pp. 5277–5282. doi: 10.1109/
GLOBECOM52923.2024.10901203
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Alternative Approach Example: Time Series Forecasting

Objective: Enhance DRL performance under traffic demand
uncertainties in network slicing.

Challenge: DRL agents may not quickly adapt to sudden changes in
traffic demand.

Solution: Incorporate a forecasting module to guide DRL agents.

18 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “How does forecasting affect the convergence of drl techniques in o-
ran slicing?” In GLOBECOM 2023 - 2023 IEEE Global Communications Conference, 2023, pp. 2644–2649. doi: 10.1109/

GLOBECOM54140.2023.10437780
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Alternative Approach Example: Time Series Forecasting

Non-real-time RIC

Near-real-time RIC

Forecasting-aided DRL-based slicing xApp

Trained forecasting models
MNO configurations

Virtualized 
O-RAN 
environment
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(2) Recommended
Action

DRL Agent DRL Policy

(1) Consult forecasting
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Figure: Forecasting-aided DRL-based O-RAN slicing: Interaction steps19.

19 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “How does forecasting affect the convergence of drl techniques in o-
ran slicing?” In GLOBECOM 2023 - 2023 IEEE Global Communications Conference, 2023, pp. 2644–2649. doi: 10.1109/

GLOBECOM54140.2023.10437780
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Alternative Approach Example: Time Series Forecasting

Algorithm Forecasting-Aided DRL Approach

1: while t < T do
2: Forecast future demand κ̂ using model F
3: Generate action aforecast based on κ̂
4: Obtain DRL agent’s action aπ = π(κ)
5: if γ(aπ, aforecast) > γthreshold then
6: Compute midpoint adistilled = 1

2(aπ + aforecast)
7: Execute action adistilled
8: else
9: Execute action aπ

10: end if
11: Receive reward R and update policy π
12: end while
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Forecasting Module Guiding DRL Agent

Forecast future traffic demand κ̂ using model F.
Generate action aforecast based on κ̂.

DRL agent’s action: aπ = π(κ).

Measure difference between actions:

γ(aπ, aforecast) =

√√√√ S∑
s=1

(aπ,s − aforecast,s)
2 (12)

If γ(aπ, aforecast) > γthreshold, adjust action.
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TSF with Action Adjustment: Code Example
1 # I n i t i a l i z e env i ronment , agent , and f o r e c a s t model
2 env = Netwo rkS l i c i ngEnv ( )
3 f o r e c a s t mod e l = LSTMForecastModel ( ) # Time S e r i e s F o r e c a s t i n g Model
4 agent = DQNAgent ( )
5 d i s t a n c e t h r e s h o l d = 0 .5 # Thre sho ld f o r a c t i o n ad jus tment
6
7 # Tra i n i n g l oop wi th f o r e c a s t i n g and a c t i o n ad jus tment
8 f o r e p i s o d e i n range ( num ep i sodes ) :
9 s t a t e = env . r e s e t ( )

10 done = Fa l s e
11 wh i l e not done :
12 # Get a c t i o n from RL p o l i c y
13 a c t i o n r l = agent . ac t ( s t a t e )
14
15 # Fo r e c a s t f u t u r e t r a f f i c
16 f u t u r e t r a f f i c = f o r e c a s t mod e l . p r e d i c t ( env . c u r r e n t t r a f f i c ( ) )
17
18 # Determine f o r e c a s t−based a c t i o n
19 a c t i o n f o r e c a s t = d e t e rm i n e a c t i o n b a s e d o n f o r e c a s t ( f u t u r e t r a f f i c )
20
21 # Compare a c t i o n s and a d j u s t i f needed
22 i f abs ( a c t i o n r l − a c t i o n f o r e c a s t ) > d i s t a n c e t h r e s h o l d :
23 a c t i o n = a c t i o n f o r e c a s t
24 e l s e :
25 a c t i o n = a c t i o n r l
26
27 # Take a c t i o n i n the env i ronment
28 n e x t s t a t e , reward , done , = env . s t ep ( a c t i o n )
29
30 # Update RL agent w i th the e x p e r i e n c e
31 agent . l e a r n ( s t a t e , a c t i on , reward , n e x t s t a t e )
32
33 # Move to the next s t a t e
34 s t a t e = n e x t s t a t e
35

Listing: TSF-Aided RL with Action Adjustment

A. Nagib, H. Abou-Zeid, H. Hassanein RL for NGNs: The Road road to Trustworthiness Slide 67/153



Safe Reinforcement Learning IEEE ICMLCN - May 26, 2025

Forecasting-Aided DRL-based Slicing
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Figure: Convergence performance of the proposed forecasting-aided approach
under 2 different traffic patterns.

19 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “How does forecasting affect the convergence of drl techniques in o-
ran slicing?” In GLOBECOM 2023 - 2023 IEEE Global Communications Conference, 2023, pp. 2644–2649. doi: 10.1109/

GLOBECOM54140.2023.10437780
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Forecasting-Aided DRL-based Slicing
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Figure: Convergence performance of the proposed forecasting-aided approach
under 2 different traffic patterns.

19 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “How does forecasting affect the convergence of drl techniques in o-
ran slicing?” In GLOBECOM 2023 - 2023 IEEE Global Communications Conference, 2023, pp. 2644–2649. doi: 10.1109/

GLOBECOM54140.2023.10437780
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Forecasting-Aided DRL-based Slicing
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Figure: Convergence performance of the proposed approach under different
forecasting error models (traffic pattern 1).

19 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “How does forecasting affect the convergence of drl techniques in o-
ran slicing?” In GLOBECOM 2023 - 2023 IEEE Global Communications Conference, 2023, pp. 2644–2649. doi: 10.1109/
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Forecasting-Aided DRL-based Slicing
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Figure: Convergence performance averaged over multiple runs (the higher the
better except for the number of steps to converge).
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Optimization-Based Strategies

Constrained RL
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Constrained RL

RL Agent Environment

Constraints

Action

State, Reward

Cost Feedback

Figure: Constrained RL with explicit feedback on constraints.

Maximize expected return, subject to the expected cost not
exceeding a given threshold
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Constrained RL

Concept:
Incorporating safety constraints directly into the learning process.

Mathematical Formulation:

max
π

Eπ

[ ∞∑
t=0

γtR(st , at)

]
(13)

s.t. Eπ

[ ∞∑
t=0

γtC (st , at)

]
≤ Cmax (14)

Solution Method Example20:
Lagrangian Relaxation:

Convert constrained optimization into an unconstrained one using
Lagrange multipliers.
Iteratively update policy π and multipliers λ.

20 Y. Liu, A. Halev, and X. Liu, “Policy learning with constraints in model-free reinforcement learning: A survey,” in The 30th
international joint conference on artificial intelligence (ijcai), 2021
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Lagrangian-Based Safe Reinforcement Learning

Formulation:

Optimize a policy π to maximize task reward Eπ[
∑

t γ
tr(st , at)].

Satisfy constraints Eπ[c(st , at)] ≤ ϵ.

Lagrangian Objective:

L(π, λ) = Eπ

[∑
t

γtr(st , at)

]
− λ · (Eπ[c(st , at)]− ϵ) ,

where:

λ is the Lagrange multiplier (penalty term).

ϵ is the constraint threshold.

Dynamic Penalty:

λ is updated dynamically based on constraint violations.

Allows adaptive trade-off between task reward and constraint
satisfaction.
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Integrating Constraints in the Reward Function

Modified Reward:

r ′(s, a) = r(s, a)− α · c(s, a),

where:

α > 0 is a fixed weight.

c(s, a) ≥ 0 measures the constraint violation.

Characteristics:

Simplifies the optimization problem by embedding the constraint
directly into the reward signal.

Requires careful tuning of α to balance task performance and
constraint satisfaction.

Limitation:

Fixed α does not adapt to varying degrees of constraint violation.

May lead to suboptimal solutions if α is not chosen carefully.
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Key Differences Between the Two Approaches

Aspect Reward-Based Lagrangian-Based
Penalty Weight Fixed (α) Dynamic (λ)

Adaptability Non-adaptive Adaptive to violations

Flexibility Simple to implement Handles multiple constraints

Trade-Off Tuning Manual tuning required Automatically balances

Complexity Low Higher (requires λ-update)
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Key Differences between Shielding and Constrained RL

Constrained Reinforcement Learning (CRL) incorporates
constraints directly into the optimization problem, ensuring safety as
part of the policy learning process.

Shielding, on the other hand, works as an external mechanism that
intervenes during action selection.

Shielding can operate on top of existing RL algorithms, ensuring
safety without modifying the underlying learning objective.

In contrast, CRL mathematically formulates the policy optimization
problem to include constraints on expected costs.
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Constrained RL: Code Example

Constrained RL

1 # CRL Training

2 for ep in range(num_eps):

3 state = env.reset ()

4 done = False

5 while not done:

6 action = agent.act(state)

7 next_state , reward , done , info = env.step(action)

8 cost = info[’constraint ’]

9 agent.learn(state , action , reward , next_state , cost)

10 state = next_state

11

Listing: Constrained RL
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Overview of RL Trustworthiness Dimensions

Open Radio Access Network Intelligent Controllers

DRL-based radio resource 
management agent

Virtualized O-RAN environment

E2 interface

Trustworthy Reinforcement Learning Framework

Modify the exploration process (e.g., overwrite actions)

Accelerated 
Generalization

Safety ExplainabilityRobustness

Radio Access Netwok Slicing
Resouce Block 

Allocation

Constraints Uncertainty

Distribution shift

Uninterpretable actions

Change the optimization criterion  (e.g., composite reward)

Figure: A trustworthy DRL framework for RRM in O-RANs21

21 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “Developing trustworthy reinforcement learning applications for next-
generation open radio access networks,” in 2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
2024, pp. 137–138. doi: 10.1109/CCECE59415.2024.10667311
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Generalizable Reinforcement
Learning
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Strategies to Enhance DRL Generalization

Learning-Aided
Approaches

Data Aug-
mentation and
Manipulation
Approaches

RL Algorithmic and
Design En-
hancements

Domain Knowledge
Integration

Transfer
Learning

Multi-Task
Learning

Meta-Learning

Ensemble
Methods

Domain
Randomization

Synthetic Data
Generation

Initialization
Strategies

Inherent DRL
Algorithm
Properties

Mode of
Training /
Deployment

Problem
Structure

Optimization

Hybrid Solutions
with Conven-
tional Methods
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Learning-Based Approaches

Policy Transfer
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What Does Transferring a Policy Mean?

Policy Transfer:

A policy encodes knowledge about how to act in an environment.

Policy transfer refers to the process of taking a policy learned in one
environment or task (the source task) and using it in another
environment or task (the target task) to improve learning efficiency,
performance, or adaptability.

21 Z. Zhu, K. Lin, A. K. Jain, et al., “Transfer learning in deep reinforcement learning: A survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 45, no. 11, pp. 13 344–13 362, 2023. doi: 10.1109/TPAMI.2023.3292075
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How do we Transfer a Policy?

Representation of Policies:

In Deep RL, policies are typically represented by neural networks:

π(a | s; θ), where θ are the network parameters.

Policy transfer means transferring these learned parameters (or a
portion of them) to the target task, potentially with modifications.

Policy transfer can also be performed by using the output/actions of
expert policies to guide the agent in learning a new policy.
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Why Policy Transfer?

Knowledge Reuse:

A policy learned for one task (source policy) can provide valuable
insights for solving a different but related task (target task).

Example: If an agent has learned to navigate a simple maze, that
policy can be reused when navigating a more complex maze.

Accelerating Learning:

Reusing a policy can reduce the exploration effort needed in new
environments.

Guides the agent toward promising regions of the state-action space.

Improving Sample Efficiency:

Learning from scratch requires many interactions with the
environment.

Policy transfer builds on prior experience, reducing sample
requirements.
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Policy Transfer Strategies

Policy Transfer

Policy Reuse Policy Distillation
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Policy Reuse: Deployment Examples

1 Initialization with Expert Policy22:

πlearner(t = 0) = πexpert(t = N)

22 A. M. Nagib, H. Abou-Zeid, and H. S. Hassanein, “Accelerating reinforcement learning via predictive policy transfer in 6g ran
slicing,” IEEE Transactions on Network and Service Management, vol. 20, no. 2, pp. 1170–1183, 2023. doi: 10.1109/TNSM.

2023.3258692
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Basic Policy Reuse: Initialization with Pre-trained Policies
+ Fine tuning

Source Task
(Simulated Environment)

Pre-trained Policy
Target Task

(Real-World Scenario)

Fine-tuned Policy

Pre-training

Initialization Adaptation

The idea is to initialize your policy for a new target task with a
pre-trained policy and then fine-tune it with interactions with the

target task/environment.

A. Nagib, H. Abou-Zeid, H. Hassanein RL for NGNs: The Road road to Trustworthiness Slide 89/153



Generalizable Reinforcement Learning IEEE ICMLCN - May 26, 2025

Policy Reuse: Initialization with Expert Policy

Expert policy

Learner agent

Learner policy

Environment

Initialize learner policy with pre-trained policy
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Policy Reuse

Expert policy

Learner agent

Learner policy

EnvironmentConsult learner policy

Done with transfer
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Policy Reuse: Update the Policy with Environment
Interaction

Expert policy

Learner agent

Learner policy

Environment

Apply action

Done with transfer
Continue with the

normal learning process
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Basic Policy Transfer + Fine-tuning

Implementation

1 # Load pre -trained model

2 pretrained_model = load_model(’source_task_model.pth’)

3 agent = DQNAgent ()

4 # Initialize with learned parameters (weights and biases)

5 agent.load_state_dict(pretrained_model.state_dict ())

6

7 # Fine -tuning loop on target task

8 for episode in range(num_finetune_episodes):

9 state = env.reset()

10 done = False

11

12 while not done:

13 action = agent.act(state)

14 next_state , reward , done , _ = env.step(action)

15 agent.learn(state , action , reward , next_state)

16 state = next_state

17

Listing: Basic Policy Transfer-Aided RL
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Policy Reuse: Deployment Examples

1 Initialization with Expert Policy23:

πlearner(t = 0) = πexpert(t = N)

2 Consulting Expert Policy During Learning24:

π = (1− θ)πlearner + θπexpert

θ: Transfer rate
θ decays over time to favor learner policy
Allows the new policy to occasionally learn on a ’clean slate’ versus
always following the expert policy.

23 A. M. Nagib, H. Abou-Zeid, and H. S. Hassanein, “Accelerating reinforcement learning via predictive policy transfer in 6g ran
slicing,” IEEE Transactions on Network and Service Management, vol. 20, no. 2, pp. 1170–1183, 2023. doi: 10.1109/TNSM.

2023.3258692

24 A. M. Nagib, H. Abou-Zeid, and H. S. Hassanein, “Safe and accelerated deep reinforcement learning-based o-ran slicing: A
hybrid transfer learning approach,” IEEE Journal on Selected Areas in Communications, vol. 42, no. 2, pp. 310–325, 2024. doi:
10.1109/JSAC.2023.3336191
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Policy Reuse: Consulting Expert Policy During Learning

Expert policy

Learner agent

Learner policy

Environment
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Policy Reuse: Step 1

Expert policy

Learner agent

Learner policy

Environment

Consult expert policy with probability θ
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Policy Reuse: Step 2

Expert policy

Learner agent

Learner policy

Environment

Get recommended action
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Policy Reuse: Step 3

Expert policy

Learner agent

Learner policy

Environment

Apply action
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Policy Reuse: Step 4

Expert policy

Learner agent

Learner policy

Environment

Reward feedback
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Policy Reuse: Step 5

Expert policy

Learner agent

Learner policy

EnvironmentUpdate learner policy
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Policy Reuse: Step 6

Expert policy

Learner agent

Learner policy

EnvironmentConsult learner policy

Done with transfer

After t time-steps
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Policy Reuse: Final Step

Expert policy

Learner agent

Learner policy

Environment

Apply action

Done with transfer
Continue with the

normal learning process
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Policy Reuse Algorithm

Policy Reuse in Python

1 import random

2
3 def policy_reuse(expert_policy , learner_policy , theta , T, beta , nu, total_steps):

4 for t in range(total_steps):

5 if t < T:

6 x = random.uniform(0, 1)

7 if x <= theta:

8 action = expert_policy.choose_action(state)

9 else:

10 action = learner_policy.choose_action(state)

11 else:

12 action = learner_policy.choose_action(state)

13
14 execute_action(action)

15 reward = calculate_reward ()

16 learner_policy.update(reward , action)

17
18 theta *= nu # Decay transfer rate

19

Listing: Policy Reuse in Python

A. Nagib, H. Abou-Zeid, H. Hassanein RL for NGNs: The Road road to Trustworthiness Slide 103/153



Generalizable Reinforcement Learning IEEE ICMLCN - May 26, 2025

Policy Reuse Example in Network Slicing

Study Overview: Utilized policy reuse as one of the baselines to
adapt a DRL agent to real-world network slicing scenarios 25.

Approach: Pre-trained agents in source network slicing environments
and employed policy reuse to help newly deployed RL agents adapt to
target environments with various traffic demand profiles.

Results: Improved DRL generalization in some situations.

25 A. M. Nagib, H. Abou-Zeid, and H. S. Hassanein, “Safe and accelerated deep reinforcement learning-based o-ran slicing: A
hybrid transfer learning approach,” IEEE Journal on Selected Areas in Communications, vol. 42, no. 2, pp. 310–325, 2024. doi:
10.1109/JSAC.2023.3336191
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Policy Reuse Example in Network Slicing

Non-real-time RIC

Collected real 
network data

Offline DRL training

DRL agent

Near-real-time RIC

Policy transfer-aided
DRL-based slicing xApp

MNO 
configurations

simulation 
environment

Virtualized O-RAN 
environment

CU 1

DU d

E2

O1

A1

Saved expert 
policies

DU 1

RU rRU 1

Slice 
s

Slice 
1

Slice 
s

Slice 
1

Figure: The policy transfer-aided O-RAN system architecture.
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Example Study: Simulation Parameters Settings

Parameter Video VoNR VR Gaming
Scheduling Algo-
rithm

Round-robin per 1 ms slot

Slicing Window
Size

PRB allocation among slices every 100 scheduling time slots

Packet Interar-
rival Time

Truncated Pareto
(mean = 6 ms, max
= 12.5 ms)

Uniform (min = 0
ms, max = 160 ms)

Real VR gaming
dataset [19]

Packet Size Truncated Pareto
(mean = 100 B,
max = 250 B)

Constant (40 B) Real VR gaming
dataset [19]

Number of Users Poisson (max = 43,
mean = 20)

Poisson (max = 104,
mean = 70)

Poisson (max = 7,
mean = 1)
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Results: Similar Traffic
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Figure: Reward convergence performance of the proposed policy transfer
algorithms: a) and b) traffic patterns 1 and 2 guided by an expert policy trained
using a similar traffic pattern (average of best 64 runs).
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Results: Different Traffic (poor performance of policy
reuse)
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Figure: Reward convergence performance of the proposed policy transfer
algorithms: a) and b) traffic patterns 1 and 2 guided by an expert policy trained
using a different traffic pattern (average of best 64 runs).
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Learning-Based Approaches

Multi-Task Reinforcement
Learning
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Multi-Task RL
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Multi-Task Reinforcement Learning

Concept:
Train an agent across multiple tasks to learn a generalized policy.

Method:
Agent learns multiple tasks simultaneously, typically using a shared
network architecture for parts of the policy/value function and
task-specific components for others.
Learn via joint optimization over all tasks.

Benefit:
Improves generalization by using domain information from related tasks
or across network configurations (e.g. sizes, topologies, or traffic
patterns).
Reduces costly per-task or per-scenario retraining

25 N. Vithayathil Varghese and Q. H. Mahmoud, “A survey of multi-task deep reinforcement learning,” Electronics, vol. 9, no. 9,
2020, issn: 2079-9292. doi: 10.3390/electronics9091363. [Online]. Available: https://www.mdpi.com/2079-9292/9/9/1363
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Example: Multi-Task DRL for Dynamic MAC Scheduling

Figure: Illustration of Multi-Task Deep RL in dynamic MAC scheduling26.

26 Z. Chen, X. Sun, Y. Jin, et al., “Multi-task reinforcement learning-based multiple access for dynamic wireless networks,” IEEE
Transactions on Mobile Computing, pp. 1–15, 2025. doi: 10.1109/TMC.2025.3559676
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Multi-Task RL Code Snippet

Training Across Tasks with Shared Policy

1 tasks = [Env1(), Env2(), ..., EnvT]

2 agent = RLAgent(shared_policy=True)

3

4 for episode in range(num_episodes):

5 # Randomly pick a task for this episode

6 task_idx = sample_from (0, len(tasks) -1)

7 env = tasks[task_idx]

8 task_ctx = get_task_context(task_idx) # one -hot or learned

embedding

9

10 state = env.reset ()

11 while True:

12 # Policy may use task_idx or context

13 action = agent.select_action(state , task_ctx)

14 next_state , reward , done , _ = env.step(action)

15 agent.store_transition(task_ctx , state , action ,

16 reward , next_state , done)

17 if done: break

18 state = next_state

19

20 agent.update ()

21 # Updates policy using accumulated transitions across tasks
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DRL Generalization: Multi-Task Learning vs. Transfer
Learning

Aspect Multi-Task Learning Transfer Learning

Objective Learn shared representations
across tasks

Transfer knowledge to a new task

What is Shared? Parameters, features across tasks Pre-trained weights from source
task

Data Requirement Multiple tasks at once Source task data; target task op-
tional
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Data Augmentation-Based Approaches

Domain-Randomization
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Domain Randomization

Domain Randomization is a training technique in RL that exposes the
agent to diverse simulated environments with randomized variations.
The randomness ensures the agent does not overfit to specific
conditions and instead learns robust policies.

Goal: Enable the agent to learn a policy that generalizes well to new,
unseen environments.

Especially useful for:

Handling variability in environments (more so than tasks).
Sim-to-real transfer for production environments.
Requires careful thought and industry/applied domain expertise to
know what needs randomization!
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Example: Network Slicing with a Digital Twin

Concept:
A digital twin is a live-synced virtual model of the real environment.
RL agent trains in the twin and deploys to the real network.

Method:
Collect real-time data from the network.
Update the digital twin environment.
Use the twin to simulate actions and train the agent safely.

Benefit:
Enables continuous learning and safe policy refinement.
Bridges sim-to-real generalization by minimizing domain gap.

Drawbacks:
High fidelity twin modeling and real-time data syncing can be resource
intensive.

26 Z. Zhang, Y. Huang, C. Zhang, et al., “Digital twin-enhanced deep reinforcement learning for resource management in networks
slicing,” IEEE Transactions on Communications, vol. 72, no. 10, pp. 6209–6224, 2024. doi: 10.1109/TCOMM.2024.3395698
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Digital Twin Enhanced RL

Figure: Digital twin provides a training ground synchronized with real network
conditions27.

27 Z. Zhang, Y. Huang, C. Zhang, et al., “Digital twin-enhanced deep reinforcement learning for resource management in networks
slicing,” IEEE Transactions on Communications, vol. 72, no. 10, pp. 6209–6224, 2024. doi: 10.1109/TCOMM.2024.3395698
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Digital Twin RL: Code Example

Training in Twin, Deploying in Real

1 for episode in range(num_episodes):

2 twin_env.update_from_real(real_env.measurements ())

3 state = twin_env.reset ()

4 done = False

5 while not done:

6 action = agent.select_action(state)

7 next_state , reward , done , _ = twin_env.step(action)

8 agent.learn(state , action , reward , next_state)

9 state = next_state

10

11 # Deployment

12 real_env.apply_policy(agent.policy)
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Generative AI for RL

This can also be done using GenAI28.

Generative Model (e.g., GAN, Diffusion)

RL Agent Environment

Synthetic Samples

Action

State, Reward

Figure: Generative models can help expand training data.

28 A. T. Z. Kasgari, W. Saad, M. Mozaffari, et al., “Experienced deep reinforcement learning with generative adversarial networks
(gans) for model-free ultra reliable low latency communication,” IEEE Transactions on Communications, vol. 69, no. 2, pp. 884–
899, 2021. doi: 10.1109/TCOMM.2020.3031930
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Overview of RL Trustworthiness Dimensions

Open Radio Access Network Intelligent Controllers

DRL-based radio resource 
management agent

Virtualized O-RAN environment

E2 interface

Trustworthy Reinforcement Learning Framework

Modify the exploration process (e.g., overwrite actions)

Accelerated 
Generalization

Safety ExplainabilityRobustness

Radio Access Netwok Slicing
Resouce Block 

Allocation

Constraints Uncertainty

Distribution shift

Uninterpretable actions

Change the optimization criterion  (e.g., composite reward)

Figure: A trustworthy DRL framework for RRM in O-RANs29

29 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “Developing trustworthy reinforcement learning applications for next-
generation open radio access networks,” in 2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
2024, pp. 137–138. doi: 10.1109/CCECE59415.2024.10667311
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Robust Reinforcement
Learning
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Non-Robust RL Algorithms
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Environment discrepancies and network stochasticity lead to
uncertainties.

Need: Enhance worst-case performance under uncertain network
conditions.
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Trustworthiness Dimension: Robustness

Definition: Robustness is the ability of an RL agent to maintain
performance under uncertainties and adversarial conditions30.

Mathematical Formulation:

π∗ = argmax
π

min
P∈P

Eπ,P

[∑
t

γtR(st , at)

]
(15)

where P is a set of plausible transition models.

Challenges:
Adversarial Attacks: Deliberate perturbations.
Model Uncertainties: Inaccurate or incomplete P(s ′|s, a).
Noise and Disturbances: Random environmental fluctuations.

Importance: Ensures consistent performance in non-ideal conditions.

30 M. Xu, Z. Liu, P. Huang, et al., “Trustworthy reinforcement learning against intrinsic vulnerabilities: Robustness, safety, and
generalizability,” arXiv preprint arXiv:2209.08025, 2022
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Approaches to Enhance Robustness: Adversarial Training

Concept:
Training the agent to be resilient against adversarial inputs 31.

Method:
Introduce adversarial perturbations during training:

s ′t = st + δt (16)

where δt is crafted to maximize the agent’s loss.

Benefit:
Improves the agent’s ability to handle unexpected disturbances.

31 L. Pinto, J. Davidson, R. Sukthankar, et al., “Robust adversarial reinforcement learning,” in International Conference on
Machine Learning, PMLR, 2017, pp. 2817–2826
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Example of Adversarial RL for Robust Beam-Tracking32

Core idea: Treat differences between training and testing scenarios
as disturbances introduced by an adversarial agent.

By jointly training a protagonist (beam-tracking agent) and an
adversarial agent, the protagonist experiences severe, realistic
disturbances.

Result: The protagonist becomes robust to various discrepancies
between training and testing scenarios.

32 M. Shinzaki, Y. Koda, K. Yamamoto, et al., “Zero-shot adaptation for mmwave beam-tracking on overhead messenger wires
through robust adversarial reinforcement learning,” IEEE Transactions on Cognitive Communications and Networking, vol. 8,
no. 1, pp. 232–245, 2022. doi: 10.1109/TCCN.2021.3116231
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Example of Adversarial RL for Robust Beam-Tracking

The adversarial agent applies changes, causing faster and more
unpredictable beam misalignment.

This emulates a challenging environment where beam directions are
harder to correct.

The protagonist learns a robust policy that effectively counters these
amplified disturbances.

Thus, after training with adversarial disturbances, the beam-tracking
agent can adapt zero-shot to new conditions during testing.
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RARL-Based Beam-Tracking Training Procedure

Protagonist (beam-tracking
agent):

Observes state (e.g., beam
alignment, wind disturbances).
Selects actions to maximize
received signal power.
Updates neural network from
transitions.

Adversary:

Observes same state.
Applies additional wind force
to minimize received signal
power.
Also updates its neural
network.

Figure: Training scenario of RARL-based
beam-tracking.
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Testing with Zero-Shot Adaptation

In testing:

Only the protagonist is active.
Environmental parameters
(e.g., wire mass, spring
constant) differ from training
values.
The protagonist applies its
learned policy to counter
beam misalignment in these
new conditions without
additional tuning.

Goal: Demonstrate that training
with adversarial disturbances
yields a robust beam-tracking
policy that generalizes to new
scenarios.

Figure: Testing scenario of zero-shot
adaptation.

A. Nagib, H. Abou-Zeid, H. Hassanein RL for NGNs: The Road road to Trustworthiness Slide 129/153



Explainable Reinforcement Learning IEEE ICMLCN - May 26, 2025

Overview of RL Trustworthiness Dimensions

Open Radio Access Network Intelligent Controllers

DRL-based radio resource 
management agent

Virtualized O-RAN environment
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Figure: A trustworthy DRL framework for RRM in O-RANs33

33 A. M. Nagib, H. Abou-zeid, and H. S. Hassanein, “Developing trustworthy reinforcement learning applications for next-
generation open radio access networks,” in 2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
2024, pp. 137–138. doi: 10.1109/CCECE59415.2024.10667311
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Explainable Reinforcement
Learning
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Trustworthiness Dimension: Explainability

Transparent Decision-Making: The rationale behind RL decisions
should be explainable to stakeholders, ensuring trust in automated
decisions.

Traceability: It should be possible to trace decisions back to specific
policies or learning processes.

Deep neural networks act as ”black boxes.”

Implication: Challenges in trust, accountability, and adoption.

33 A. Heuillet, F. Couthouis, and N. D́ıaz-Rodŕıguez, “Explainability in deep reinforcement learning,” Knowledge-Based Systems,
vol. 214, p. 106 685, 2021
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Approaches to Achieve Explainability: SHAP

What is SHAP?

SHAP stands for SHapley Additive exPlanations.

A popular framework for interpreting the output of machine learning
models.

Based on cooperative game theory concepts, specifically the Shapley
value.

Key Idea:

Assign a contribution value to each feature, indicating its influence on
the model’s prediction.

Provides a consistent and theoretically sound explanation by fairly
distributing the prediction among the input features.

33 S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017, pp. 4765–4774
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Approaches to Achieve Explainability: SHAP

Formal Definition:

ϕi =
∑

S⊆N\{i}

|S |!(|N| − |S | − 1)!

|N|!
[π(a|S ∪ {si})− π(a|S)] , (17)

where:

ϕi : Contribution of state feature si to the decision to take action a.

S : A subset of state features excluding si .

π(a|S): Policy output (probability of action a) with features in subset
S .

Shapley weighting ensures fair distribution of contributions across all
subsets.

33 S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017, pp. 4765–4774

A. Nagib, H. Abou-Zeid, H. Hassanein RL for NGNs: The Road road to Trustworthiness Slide 134/153



Explainable Reinforcement Learning IEEE ICMLCN - May 26, 2025

Approaches to Achieve Explainability: SHAP

Explanation:

SHAP quantifies how much each feature si influences the agent’s
decision.

It considers the marginal impact of si across all subsets of features.

Context in XRL:

Explains RL policies by identifying the most influential state features.

Enhances interpretability, debugging, and trustworthiness of RL
systems.
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Approaches to Achieve Explainability: Example

Figure: Deployment of explanation-guided deep reinforcement learning in
O-RAN34.

34 F. Rezazadeh, H. Chergui, L. Alonso, et al., “Sliceops: Explainable mlops for streamlined automation-native 6g networks,”
IEEE Wireless Communications, vol. 31, no. 5, pp. 224–230, 2024. doi: 10.1109/MWC.007.2300144
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Approaches to Achieve Explainability: Example

Figure: Explanation guided DRL maximize the decision confidence compared to
traditional DRL35.

35 F. Rezazadeh, H. Chergui, L. Alonso, et al., “Sliceops: Explainable mlops for streamlined automation-native 6g networks,”
IEEE Wireless Communications, vol. 31, no. 5, pp. 224–230, 2024. doi: 10.1109/MWC.007.2300144
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Open Research Challenges
and Future Directions
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Future Perspectives toward Trustworthy RL for 6G

Developing wireless benchmark challenges are essential to foster
reproducible research that builds on the collective progress of the
wireless research community.

Foster a culture where limitations of AI are encouraged and reported
as challenges for others to pursue.

Industrial collaboration to better understand and model the
challenges of trustworthiness.

Foundational ”Generalist” 6G DRL agents that are trustworthy.

Can we build generalizable and explainable DRL agents for wireless?
Incorporating safety and robustness as well.

Continual and life-long learning that is sample efficient.

Real-time scalability, efficiency, and low-latency.
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RL Resources
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RL Resources: Concepts

Reinforcement Learning: An Introduction
incompleteideas.net/book/RLbook2020.pdf

RL Theory Seminars:
sites.google.com/view/rltheoryseminars

Safe Reinforcement Learning Online Seminars:
sites.google.com/view/saferl-seminar

Mila Tea Talks:
sites.google.com/lisa.iro.umontreal.ca/tea-talks

Reinforcement Learning Specialization on Coursera
coursera.org/specializations/reinforcement-learning

Reinforcement Learning Mailing List:
groups.google.com/g/rl-list
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RL Resources: Concepts Specific to Wireless Networks

Single and Multi-Agent Deep Reinforcement Learning for
AI-Enabled Wireless Networks: A Tutorial:
ieeexplore.ieee.org/document/9372298

Ericsson Blog Series on RL:
ericsson.com/en/blog/2023/11/reinforcement-learning
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RL Resources: Tools

Denny Britz’s RL Repository:
github.com/dennybritz/reinforcement-learning

MinimalRL-PyTorch:
github.com/seungeunrho/minimalRL

Tools for RL in Python
https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python
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Generalizable RL Resources

Quantifying Generalization in RL: github.com/openai/coinrun
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Safe RL Resources

Safe RL Baselines:
github.com/chauncygu/Safe-Reinforcement-Learning-Baselines

Safe Policy Optimization (SafePO):
github.com/PKU-Alignment/Safe-Policy-Optimization

OmniSafe:
github.com/PKU-Alignment/omnisafe

Safety Gymnasium:
github.com/PKU-Alignment/safety-gymnasium

Safe Reinforcement Learning from Human Feedback (RLHF):
Beaver: github.com/PKU-Alignment/safe-rlhf
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Safe RL Resources

Safe Control Gym: github.com/utiasDSL/safe-control-gym

Fast Safe RL (FSRL): github.com/liuzuxin/FSRL

Offline Safe RL (OSRL): github.com/liuzuxin/OSRL

Safety Gym and Starter Agents (Archived):
github.com/openai/safety-gym

github.com/openai/safety-starter-agents
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Robust RL Resources

StateAdvDRL: github.com/chenhongge/StateAdvDRL
Robust RL against adversarial perturbations on state observations.

Adversarial Reinforcement Learning Reading List:
github.com/EzgiKorkmaz/adversarial-reinforcement-learning
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Explainable RL Resources

Awesome Explainable RL:
github.com/Plankson/awesome-explainable-reinforcement-learning

SHAP (SHapley Additive exPlanations):
github.com/shap/shap
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RL for Next-Generation Wireless Networks

Available Resources
List of RL-based wireless environments.

Planned Resources:
Trustworthy RL algorithm implementations in NGWN literature.

Follow My GitHub
github.com/ahmadnagib
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Conclusion

A. Nagib, H. Abou-Zeid, H. Hassanein RL for NGNs: The Road road to Trustworthiness Slide 150/153



Conclusion IEEE ICMLCN - May 26, 2025

Final Thoughts

Adaptive Trustworthy RL Algorithms Needed
Traditional RL struggles with dynamic and heterogeneous O-RAN
environments.
Tailored RL approaches are essential for next-generation networks.

Trade-offs in Trustworthy RL
Balancing safety, explainability, and performance is challenging.
Careful design is required to meet competing objectives.
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Collaboration Opportunities

We encourage community involvement in building Trustworthy RL
methods for next-generation wireless networks.

Reach out to us to explore opportunities for collaborative research
and development.
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Q&A and Acknowledgments

Thank you for your attention, please contact me if you have any
questions!

Ahmad Nagib
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